MODELISATION TOOLS FOR ASSET MANAGEMENT

UIC Rail System Department

17 – 04 – 2019 Paris

Prof. Dr.-Ing. Marc ANTONI
Rail System Director
UIC, Rail System Department
1. Why does Asset management need Modelling?
2. Modelling for Infrastructure management after conception engineering
3. Modelling for Infrastructure management before conception engineering
4. Summary
1 - Why does Asset management need Modelling?

Asset management: looking for the optimal balance

- Value for the society
- Traffic fees
- Maintenance costs
- Levels of maintenance and renewal
- Target performance of the network: Line capacity, speed, acceptable unavailability rate, safety rate, track availability...
- Environment changes
- State of Network: Performance, level of deterioration, evolution, safety, security...
2- Modelling for Infrastructure Management after conception engineering

Three steps (example for track):

3 – Tools for LCC calculation at the national or route levels, including environmental effects, track possession and unavailability costs…

2 – Tools for the estimation of maintenance needs of the track (with different renewal strategies)

1 – Work of the deterioration and failure laws of each the track components

0 – Collect and Store in a coherent way data’s
2 - Modelling for Infrastructure Management after conception engineering

Step 1: Lifespan of the components (ballasted HSL)

- Failure laws of rails:
 - lifespan of the rails on a ballasted HSL is about 400MT with 3% of cumulative defects, 700MT with 6%
 - the parameters of these laws are sensitive to track topology and aggressiveness of the rolling stock…

The failure rate can grow more quickly if the rolling stock has an important rate of “slippage” (20% for some materials)
2 - Modelling for Infrastructure Management after conception engineering

Step 1: Lifespan of the components (ballasted HSL)

- Failure laws of aluminothermy welding:
 - lifespan of a weld on ballasted HSL is about 400MT with 3% of cumulative defects [even without preventive grinding]
2 - Modelling for Infrastructure Management **after** conception engineering

Step 1: Lifespan of the components (ballasted HSL)

- **Failure laws of manganese or movable frogs:**
 - Lifespan of these components is longer on wooden sleepers than on concrete ones
 - The parameters of these laws are sensitive to the aggressiveness of the rolling stock
2 - Modelling for Infrastructure Management after conception engineering

Step 1: Lifespan of the components (ballasted HSL)

- Failure laws of manganese or movable frogs:
 - lifespan of these components is longer on wooden sleepers than on concrete ones
 - the parameters of these laws are sensitive to the aggressiveness of the rolling stock
2 - Modelling for Infrastructure Management after conception engineering

Step 1: Lifespan of the components (ballasted HSL)

- **Failure laws of switch half switch set:**
 - lifespan of these components is longer on wood sleepers than on concrete ones
 - the parameters of these laws are sensitive to the aggressiveness of the rolling stock and the hardness of the track
2 - Modelling for Infrastructure Management after conception engineering

Step 1: Lifespan of the components (ballasted HSL)

- **Geometry degradation laws:**
 - lifespan of the ballast, without sand-gravel mix bitumen or PAD, is approximately 25 years on HSL (>300)
 - this lifespan will be much higher with sand-gravel mix bitumen and/or PAD
 - maintenance needs follow Cochet-Maumy laws

\[
\text{Im}(N) = k \times 0.8 \times \delta \times \left(a + b \times \left(\frac{N}{5} - 1 \right) \right)
\]
2 - Modelling for Infrastructure Management after conception engineering

Step 1: Lifespan of the components (ballasted HSL)

Some USP could have an influence on track lifespan and HSL geometry \(\Rightarrow\) specific Cochet-Maumy parameters
2 - Modelling for Infrastructure Management after conception engineering

Step 2: Estimation of maintenance needs (ballasted HSL)

Tools for estimation of track maintenance needs (EBM):

Principe / ballasted track:

1 – Cyclical or programmed operations:
 Fixed charges determined by the standards for track surveillance, programmed maintenance, structure…

2 – Preventive conditioned maintenance:
 - Levelling maintenance charges: Interventions conditioned by the information coming from track surveillance. Probabilistic estimation of the intervention needs for a specific route, for a UIC group of routes…
 - Asset replacement charges: Interventions conditioned by asset defect detection… Probabilistic estimation of the failure laws of each asset
2 - Modelling for Infrastructure Management after conception engineering

Step 2: Estimation of maintenance needs (ballasted HSL)

Example of estimation of maintenance needs for the French network

Switches & Crossing UIC 1 to 6
2 - Modelling for Infrastructure Management after conception engineering

Step 2: Estimation of maintenance needs (ballasted HSL)

Example of estimation of maintenance needs for the French network

Switches & Crossing UIC 1 to 6

Normal Track UIC 1 to 6
2 - Modelling for Infrastructure Management after conception engineering

Step 3: LCC calculations (ballasted and unballasted HSL)

HSL ballasted track and slab track (UIC gr3)
Thanks to its experience of component and sub-system behaviour a Infra Manager can:
→ specify and optimise new components to facilitate maintenance, taking into account usage, environment, specific quality targets,…
→ optimise the dimension of spare parts and the corresponding maintenance organisation.

The following examples come from signalling:
- choice of failure laws,
- architecture choice for critical computerised system.
3 - Modelling for Infrastructure management before conception engineering

Modeling methods: renewal density for successive replaced components

Without system ageing

• The renewal density gives the replacements due to failure at time t:

$$h(t) = \sum_{n=1}^{\infty} -[(1 - F(t))]^n$$

where $*$ denotes the convolution.

• The integral of this function gives the number of expected replacements before time t.

\[\text{Somme}\]

\[
\begin{array}{ccc
3 - Modelling for Infrastructure management before conception engineering

Modeling methods: renewal density for successive replaced components

With system aging

- We can include the ageing of the system (or effects of repairs) by using a factor K

$$\eta_n = \eta_0 \cdot K$$

at the nth replacement.

- This translates the fact that even a new component has a reduced lifetime if it is introduced into an ageing system.
3 - Modelling for Infrastructure management before conception engineering

Modeling methods: renewal density for successive replaced components

- **Maintenance expenses:** \(Y(t) = c_i(t) + c_u \cdot n \cdot h(t) \)
 - \(c_i \): current costs
 - \(c_u \): replacement costs for one component
 - \(n \): number of components
 - \(h(t) \): renewal density

- **Expected global maintenance expenses (including renewal) per year:**
 \[
 C(T)/T = [X + \sum_{t=0}^{T-1} \int Y(t)/T]
 \]

 With \(X \): renewal costs

\[
\frac{\text{Co}}{\text{To with K=1}}
\]
3 - Modelling for Infrastructure management before conception engineering

Modeling methods: renewal density for successive replaced components

- Maintenance expenses: \(Y(t) = c_i(t) + c_u \cdot n \cdot h(t) \)
 - \(c_i \): current costs
 - \(c_u \): replacement costs for one component
 - \(n \): number of components
 - \(h(t) \): renewal density

- Expected global maintenance expenses (including renewal) per year:

\[
\frac{C(T)}{T} = [X + \sum_{t=0}^{T-1} \frac{\int Y(t)}{T}]
\]

With \(X \): renewal costs

\[E(T) \]
3 - Modelling for Infrastructure management **before** conception engineering

Modeling methods: renewal density for successive replaced components

Design choices could have a huge impact on a maintenance strategy and on the chances of reaching the right quality level (availability, security, safety…) with the economic target value

The terms of the requirements have to be chosen taking into consideration the context of use and the economic and organizational targets… which are not known by suppliers
3 - Modelling for Infrastructure management before conception engineering

Architecture choice for a critical computerised system

Classical architecture

- Without independence between System and Functional SW

Proposed architecture

- With distinction between HW&System SW and the functional SW

Input (TOR or communications in the railway context)

Mixed functional and basis Softwares
Probabilistic safety

Hardware

Output (TOR or communications in the railway context)

I1 Interface

N of P architecture of the real time computerised system – SIL4 development
3 - Modelling for Infrastructure management **before** conception engineering

Architecture choice for a critical computerized system

Classical architecture
- Without independence between System and Functional SW

Proposed architecture
- With distinction between HW&System SW and the functional SW

- Functionalities (interpretable and deterministic model as Petri nets with fixed writing and interpretation rules)
- Input (TOR or communications in the railway context)
- Output (TOR or communications in the railway context)
- Software supporting the execution of the functionalities
- Hardware
- N of P architecture(s) of the real time computerised system – SIL4 development

Application of formal validation methods
3 - Modelling for Infrastructure Management after conception engineering

Step 3: LCC calculations
- Case 1: without formal interface between HW and functional SW

![Graph showing CAPEX/T, OPEX/T, and Cumul/T with annotations for Functional Software Renewal and Hardware Renewal (obsolescence).]
3 - Modelling for Infrastructure Management after conception engineering

Step 3: LCC calculations

- **Case 2**: with a formal interface between HW and functional SW
Modelisation for Infrastructure Management after conception engineering

Step 3: LCC calculations (Critical IT system with and without formal interface between HW and functional SW)

- **Case 2**: with a formal interface between HW and functional SW
This approach allows a good modelling of the intuitively perceived phenomena:
- regeneration vs. maintenance
- value of and value from the assets
- a system cannot last indefinitely

The calibration of the model was based on accessible real data.

General approach → the application range is very wide. All replaceable infrastructure equipment can be used for such a study.
4 - Summary

- Modelling is necessary to estimate “value” and “risk” of and from our infrastructures, in different scenarios.
- The battle for maintenance is won or lost at the system definition & design stage.
- It is essential to consider the industrial balance of the trio made up of “Maintenance costs – Network Performances regarding the business – Quality&Safety”… including security.
Stay in touch with UIC!

www.uic.org

#UICrail

Prof. Dr.-Ing. Marc ANTONI,
Rail System Director
UIC Rail System Department
antoni@uic.org

Thank you for your kind attention!