How to organize data on assets to feed the different phases to the process and tool

GianPiero Pavirani – Head System Engineering - RFI s.p.a

Session III – Tuesday 13th October
The AM of a railway network: an integrated system

Assets Management includes all the systems, methods, processes and tools to optimize costs, performance and risks during the whole life cycle of railway infrastructure.

The goal is to achieve the best value for money, such optimizations should cover all infrastructure activities (construction, maintenance and renewal, including construction machines, machines and materials) for the life cycle.

Requirements:

- **to know what are the requirements of the parties concerned regarding maintainability, availability and reliability.** In order to specify the realistic requirements, assets performance are determined in terms of Key Performance Indicators, trend analysis, etc.; moreover, adequate maintenance systems should be realized and maintained to manage all the activities;

- **the asset Manager must be able to perform risk analysis for maintenance planning;**

- **must be established a method of maintenance management** that takes into account the different aspects of cost / risk / revenue, in the different scenarios considered, taking into consideration the maintenance activities, the frequencies of maintenance, inspection frequencies, etc...
An Integrated Management System

Execution

Asset effectiveness
A railways infrastructure manager company has to manage a high number of objects and resources in different areas (technological, mechanical, electrical, structures, human resources, machines) optimizing the company goals in the most profitable and sustainable level possible; this implies a systemic approach that in RFI led to:

- integration of processes and tools in order to feed the practices that preserve and increase asset value.
therefore requests that the infrastructure manager so to understand how it can practically integrate processes......

how do I get an integration between the different processes?

how do I get a single view of the infrastructure to handle?

A good common railways objects data model that ensures data internal consistency and reliability.

"An asset that is not in the database does not exist“........
Our primary objective is to develop a unique database containing all asset data concerning all business processes in such a way that the data are useful for all processes. All the tools that I developed have realized a modular system that integrated a variety of tools with maximum coverage of all assets and processes. The basis for the integration of all processes is a common database for the whole company.
how do I build a good database of objects of the infrastructure......?

I cannot upset everything every time that change the organization, or introduction new objects, or introduce new tools, or change something

how do you answer to the different views in society (business, technical, functional)........?

A good data model is required to put the objects and their characteristics in their mutual dependencies and relationships and make them accessible at the right level and for the right purposes.
To locate correctly objects in the model taking in account their hierarchy and mutual dependencies is necessary a good functional location code, able to ensure flexibility in case of organizational changes.
Objects and their representation

1st Level: station

2nd level: Group of tracks in station

Functional Location code

Every object should be represented into the system by an univocal code; The functional location code should be a speaking code giving information about

The hierarchical level of the object
Objects and their representation

3rd level:
The first odd running track in Foligno station

4th level:
Group of switch under the first odd running track in Foligno station

5th level:
First switch under the first odd running track in Foligno station
Class and Characteristics

Functional Location class

Class is a homogeneous object family and
the technical file of the object.
Every class has its own set of characteristics
(technical information fields)
Every object is related at least to a class, so
Every objects is related to the characteristics of
the class it belongs to

Values inside characteristics vary from object to
object

Characteristics may have mutual dependencies
and some Characteristic values could be
calculated starting from others.

In the example it’s possible to see some technical
characteristics of a level crossing (number of tracks,
type of level crossing, type of Signals and so on).
The concept of class is very flexible; it may be used also in order to create a map of the working centres that, for each specialization, do maintenance on that object.

This ensure the best flexibility in case of change of organizational configuration.

This is very important in the authomatization of work orders creation too. A job will put into them the right working centre, taking the information from here.

In the example it is possibile to see a special work centre class whose characteristics are the specializations e their values are the working centres.
If every object associate the diagnostic data and fault, I can then feed the various systems that support us in different analysis:

1. To plan in the medium-long time, program in a short time in an optimized maintenance operations;

1. Optimizing maintenance policies with failure analysis and a review of the risks associated with individual objects.
other questions that the manager makes are inherent to the process of analysis of the myriad of data with the need to correlate with each other ...

"... The analysis of data that do not lead to action are ends in themselves ...“

"... I have a sophisticated system of monitoring, but I make the data volume or obtain information? ...“

"... How can I drive maintenance with diagnostic data and faults (state of infrastructure) ...?"

"How do I ... maintenance planning more objective and less subjective....?“

"... And 'possible" codify "the experience of planning and make it available...?"
Planning and Programming: Inframanager

Advanced tool of analysis of the Data and it turns them into useful Information to the activity of the Planner:

- It individualizes and proposes the correct activities
- It individualizes and proposes the priorities
- It optimizes the interventions rationalizing the resources

Through algorithms, elaborated from the experts and in tuning with the technical legislation, that they keep in mind of all the fundamental technical parameters,

The tool activates an efficient and effective maintenance rules → The policy of maintenance
The degradation: predictive analysis

TRACK 1

- Sept 2013
- Jan 2014
- May 2014
- Nov 2014

TRACK 2

- Sept 2013
- Jan 2014
- May 2014
- Nov 2014

Intervention threshold

Warning threshold

Scheduling date
InfraSwitch: Trending Switches & Crossings Parameters

Predicted Intervention Date
Maintenance Risk: Failure’s Catalogue

These catalogues are used in case of failure and, for a given object class, supply information about all the possible object parts, problem codes, failure causes.

These information, together with train delay information and suppressed trains, enrich and feed failure notifications.

That is the basis of every reliability analysis

<table>
<thead>
<tr>
<th>Aviso</th>
<th>Testo cd.parte ogg.</th>
<th>Testo gruppo codici parte oggetto</th>
<th>Testo cd. causa</th>
<th>Testo gr. codici prob.</th>
<th>Testo gruppo cod. causa</th>
</tr>
</thead>
<tbody>
<tr>
<td>10510122</td>
<td>Lampada a filamento</td>
<td>Relè Schermo</td>
<td>Utilizzo - Invecchiamento</td>
<td>Modi guasto elettrici</td>
<td>Intrinsechi non rilevabili in manut.</td>
</tr>
<tr>
<td>10510123</td>
<td>Unità H Disk</td>
<td>C.T.A. di tipo elettronico OFFICE 1000</td>
<td>Utilizzo-Invecchiamento</td>
<td>Modi guasto meccanici</td>
<td>Intrinsechi non rilevabili</td>
</tr>
<tr>
<td>10510125</td>
<td>Filo di talcimento</td>
<td>Barrera</td>
<td>Urti e danneggiamenti improvvisi</td>
<td>Modi guasto elettrici</td>
<td>Altre non rilev. in manut.</td>
</tr>
<tr>
<td>10510126</td>
<td>Salciatura alluminotermica</td>
<td>Salciatura</td>
<td>Variazione Termica eccezionale</td>
<td>Modi guasto meccanici</td>
<td>Altre non rilev. in manut.</td>
</tr>
<tr>
<td>10510127</td>
<td>Lampada alogena</td>
<td>Relè Schermo</td>
<td>Utilizzo - Invecchiamento</td>
<td>Modi guasto elettrici</td>
<td>Intrinsechi non rilevabili in manut.</td>
</tr>
<tr>
<td>10510128</td>
<td>Persino</td>
<td>Persino</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10510129</td>
<td>Nessuna</td>
<td>Nessuna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10510130</td>
<td>Nessuno</td>
<td>Nessuno</td>
<td>Ingombro da veicoli</td>
<td>Modi guasto generali</td>
<td>Avaria senza guasto</td>
</tr>
</tbody>
</table>
Reliability Analytics: Growth Analysis

Also on the selected family, let’s make an analysis of the trend growth to get to know the family in recent years:

You can make the first evaluations on the effectiveness of maintenance policies, noting that their application has given a trend led to an increasing MTBF equal final at 1494 days. (This value should be compared with respect to the target value)

The analysis shows a good 'Goodness of Fit' and a β value close to 1. You may then proceed to the failure mode "bad contact" analysis of distribution (Weibull).
Reliability Analytics: Reliability distribution analysis

Distribution Analysis:
- Family of objects useful life
- MTBF = 1512 days
3. **Definition of levels of mitigated risk by each maintenance activity for each failure mode.** The last step will be the allocation for each asset maintenance standards in use, the level of risk mitigated, then measuring the impact that each activity has on the specific standard critical failure mode according to the category of risk considered. Finally, once defined the mitigating actions, the next steps will focus on the definition of mitigated risk by a similar procedure to that mentioned above in the unmitigated risk level definition.

e.g. Subsequently be assessed maintenance activities (tasks) mitigating the risk 'bad contact', indicating, for each task and for the views, the level of impact and risk mitigation in respect of:
The primary purpose of RINF is to **support technical compatibility** between fixed installations and rolling stock within the European community.

For that purpose the railway network is considered to be at the **macro-level** a series of operational points and sections of line.

At the **micro-level**, subsystem features are assigned to infrastructure elements, such as tracks and sidings. Ultimately macro- and micro-level should be presented in terms of digital maps.

Due to UE Decision 2014/880/EU Member States must develop an infrastructure Register.
RINF: Register of infrastructure

Member States will ensure RINF publication in xml format, and therefore information will be arranged at the highest level per Member State. A common interface for digital data should ensure a common output accessible for users across the European community.

Member State must provide information related to 171 items Those items come from Technical Specifications for Interoperability (STI)

This common specifications are going more and more in the direction of linear asset management data, in example they foresee the use of the location points, that is point along the line (at track level) where some attributes changes (CE declaration of verification for tunnels, energy, ccs, infrastructure, for example).
New classes were developed for each of the object family involved in RINF.

107 automatic control rules were developed; they are based on European Railways Agency Application Guide and on business and national rules.

Declaration of verification for tunnels, energy, ccs, infrastructure will be linearized on RFI systems.

In the example it is possible to see a special RINF class whose characteristics are the items required by the decision.